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ABSTRACT

Malaria and dengue fever are among the most important vectorborne diseases in the tropics and subtropics.

Average weekly meteorological parameters—specifically, minimum temperature, maximum temperature,

humidity, and rainfall—were collected using data from 100 automatedweather stations from the Indian Space

Research Organization. We obtained district-level weekly reported malaria cases from the Integrated

Disease Surveillance Program (IDSP), Department of Health and Family Welfare, Andhra Pradesh, India,

for three years, 2014–16. We used a generalized linear model with Poisson distribution and default logarithm-

link to estimate model parameters, and we used a quasi-Poisson method with a generalized additive model

that uses nonparametric regression with smoothing splines. It appears that higher minimum temperatures

(e.g.,.248C) tend to lead tohighermalaria counts but lower values donot seem tohave an impact on themalaria

counts. On the other hand, higher values of maximum temperature (e.g., .328C) seem to negatively affect the

malaria counts. The relationships with rainfall and humidity appear to be not as strong once we account for

smooth (weekly) trends and temperatures; both smooth curves seem to hover around zero across all of their

values.We note that a rainfall amount between 40 and 50mm seems to have a positive impact onmalaria counts.

Our analyses show that the incremental increase in meteorological parameters does not lead to an increase in

reported malaria cases in the same manner for all of the districts within the same state. This suggests that other

factors such as vegetation, elevation, and water index in the environment also influence disease occurrence.

1. Background

The World Health Organization (WHO) reports that

in 2015 approximately 3.2 billion people—nearly one-

half of the world’s population—were at risk of malaria.

Sub-Saharan Africa carries a disproportionately high

share (90%) of malaria cases and deaths. India con-

tributes 70%ofmalaria cases and 69%ofmalaria deaths

in the Southeast Asia region (WHO Global Malaria

Programme 2015). Malaria is transmitted through the

bites of femaleAnophelesmosquitoes, which lay eggs in

the water and thrive during rainy seasons of tropical

countries (Climatenexus 2018).

Transmitted by bites from infected mosquitoes and

other insects (vectors), vectorborne diseases (VBDs)

are particularly dependent on climatic factors because

insects have no internal control over their body tem-

perature, and, as ambient temperatures rise, their dis-

tribution may expand through increased reproductive

rate, biting behavior, and survival. Humidity and the

availability of water for breeding also determine vector

distribution, longevity, and behavior. However, the in-

cubation period of pathogens within vectors is also

temperature dependent and tends to become shorter in

warmer conditions; human behavior is also likely to be

affected by climate change, which may increase human

interaction with vectors and the diseases they carry

(WHO Western Pacific 2018).

Several researchers have explored the association of

malaria prevalence with environmental conditions. Yacob

and Swaroop (1944) used indicators such as rainfall to

forecast a malaria outbreak in 1921 in Punjab, India.
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Hicks and Majid (1937) ascertained that high humid-

ity, and not the total rainfall, was the key factor leading

to a malaria epidemic. A similar negative correlation

was observed between rainfall and malaria incidence

in a 9-yr study on the Colombian Pacific coast (González
et al. 1997). It has been observed that although malaria

incidence is influenced by periods of heavy rainfall, ex-

cessive rainfall does not initiate an epidemic (de Zulueta

et al. 1980). More recently, researchers have noted

that in Madhya Pradesh, a weak correlation was ob-

served between the number of rainy days and the in-

cidence of malaria (Singh and Sharma 2002). Further,

immature stages of the mosquito in water take about

10 days at optimum temperature to become adults,

thus time duration is critical for predicting incidence

of malaria.

Dhiman (2016) noted that temperature of two habi-

tats affect mosquito development, that is, water bodies

for development of immature stages and dwellings

and/or resting places used by the adult mosquitoes after

taking blood meal. Earlier studies have shown similar

associations; a study conducted in hilly regions of India

showed a higher positive correlation between monthly

incidence of malaria and monthly minimum tempera-

ture, mean temperature, and rainfall with a one-month

lag effect. The correlation coefficient for the association

between monthly rainfall and monthly incidence of

malaria was found to be greater than for the association

between temperature and malaria incidence (Devi and

Jauhari 2006). This indicates that rainfall plays a more

important role in the transmission of the disease than

temperature does. Several researchers reported a simi-

lar relationship of transmission with meteorological

parameters (Bi et al. 2003; Greenwood and Pickering

1993; Ramasamy et al. 1992; Gupta 1996; Bouma et al.

1996). Furthermore, Zhou et al. (2004) has reported that

the synergistic effect of temperature and rainfall on

malaria transmission is much more pronounced than

individual effects, and diurnal temperature range has

been stated to be critical in the transmission of malaria

(Paaijmans et al. 2010).

Researchers have reported on the influence of mini-

mum temperature, humidity, and rainfall on malaria

case occurrence in the community. Relative humidity,

which is indirectly affected by rainfall at a given tem-

perature, is critical for the life cycle of mosquitoes. For

successful transmission of malaria, the infected vector

species should survive for at least one week (Craig et al.

1999). If relative humidity is low, the infected vector

species will die before the completion of sporogony

(development of malaria parasite in the mosquito).

Relative humidity of 60% or higher has been reported

by several researchers as optimal for the development

and survival of the mosquito vector and transmission of

malaria (Bruce-Chwatt 1980; Craig et al. 1999; Grover-

Kopec et al. 2006).

Other ecological variables have also been studied.

McMichael and Martens (1995) noted that malaria in-

cidence in both forest and nonforest areas was signifi-

cantly correlated with rainfall in the first season of

malaria. They recognized that nonforest areas devel-

oped breeding sites much sooner than the soil surface of

forests. For this reason, the impact of high rainfall on

malaria incidence is seen sooner in nonforest area.

However, excessive rain counteracts mosquito devel-

opment by flushing out their larvae. Other ecological

determinants such as the soil type have been noted

to influence the stagnation of water. Standing water

makes a suitable breeding habitat for the mosquito

vector; it depends on the type of soil and the amount of

rain (Dhiman 2016).

Since a number of researchers have reported factors

other than meteorological conditions that influence the

occurrence of disease, we recommend that data such as

satellite-derived built-up index, vegetation index, ele-

vation, and soil type should be taken into consideration

for better predictive models. Tay et al. (2012) empha-

sized simultaneous analysis of meteorological and

parasitological data at different microepidemiological

ecosystems at the local level is needed to assess the ef-

fects of climate on malaria cases.

This study offers an opportunity to explore the rela-

tionship of weather variables in an Indian state with

distinctly different eco-epidemiological conditions

across districts but with a common health information

system and care structure. Furthermore, the availability

of weekly data for the modeled parameters allowed us

to capture the influence ofmeteorological variables such

as relative humidity on the survival of the mosquito

vector and transmission of malaria at short time inter-

vals. The relevance of a short window of time has been

noted earlier by Craig et al. (1999) and Tay et al. (2012).

Showcasing how the relationship of malaria occur-

rence varies with weather variables in different eco-

logical conditions is important. These relationships

determine if a prediction model developed in a certain

ecological zone is applicable to another zone for fore-

casting malaria prevalence. Additionally, the data were

available at small time intervals for all the districts of

the state. This helped us to analyze the relationship of

malaria cases with meteorological variables in different

microepidemiological ecosystems.

Our choice of state has been determined by several

factors: first, the state has districts with distinctly dif-

ferent climate, weather, vegetation, and soil. For in-

stance, nine districts in the coastal region in Andhra
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Pradesh are water abundant and four districts—namely,

Anantapur, Chittoor, Kadapa, and Kurnool—are

drought prone.

For this study, we procured the data from a num-

ber of sources. The average weekly meteorological

parameters—specifically, minimum temperature, maxi-

mum temperature, humidity, and rainfall—were col-

lected using data from 100 automated weather stations

from the Indian Space Research Organization (ISRO;

see the appendix for a list of this and other abbrevia-

tions). We obtained district-level weekly reported ma-

laria cases from the Integrated Disease Surveillance

Program (IDSP), Department of Health and Family

Welfare, Andhra Pradesh, for three years, 2014–16. The

IDSP is one of themajor national health programs under

the National Health Mission for all states and union

territories in India. The key objective of the program is

to strengthen and maintain a decentralized laboratory-

based information-technology-enabled disease surveil-

lance system for epidemic-prone diseases. The program

is designed to monitor disease trends and to detect and

respond to outbreaks in the early rising phase through a

trained rapid response team. The data collection is a

passive process and is based on rapid diagnostic tests for

the detection of circulating parasite antigens (https://

www.who.int/malaria/data/en/).

In India, Plasmodium falciparum and Plasmodium

vivax are the most common species causing malaria;

their proportion being around 50% each. Plasmodium

vivax is more prevalent in the plain areas, while

Plasmodium falciparum predominates in forested and

hilly areas, hence the analysis focuses on these subtypes.

According to Dhiman (2016), the advent of control

measures in India was in the early 1950s, both by the

central government and state governments. Nevertheless,

malaria has become endemic in the central, southeast-

ern, and northeastern parts of the country. However,

with climate change, it is expected that the disease may

spread to newer areas. Therefore, adaptation to climate

change is very important. By 2100 it is estimated that

average global temperatures will have risen by 1.08–
3.58C, increasing the likelihood of many vectorborne

diseases in new areas. The greatest effect of climate

change on transmission is likely to be observed at the

extremes of the range of temperatures at which trans-

mission occurs. For many diseases, these lie in the range

148–188C at the lower end and about 358–408C at the

upper end. Malaria and dengue fever are among the

most important vectorborne diseases in the tropics and

subtropics (Githeko et al. 2000).

Against this backdrop, the study team wanted to find

out whether meteorological data can help to predict

occurrence of malaria. With the inherent variability in

physical characteristics within Indian states, can we

predict areas of high risk based on climate variables?

The inherent purpose was to develop knowledge that

would help to prepare the health sector for the changing

climate and identify areas that need to be strengthened

and channels of information that need to be built.

2. Statistical models and estimation methods

For each of the 13 districts of Andhra Pradesh, a set of

four plausible statistical models was developed with

varying degrees of complexity for each model, and

corresponding statistical model parameters were es-

timated using a maximum quasi-likelihood method

based on either a fully parametric model or a semi-

parametric statistical model with smooth trends. The

statistical model estimations were performed using

the R software’s base ‘‘glm’’ function (see https://

www.statmethods.net/advstats/glm.html for a quick

overview). In particular, we used a generalized linear

model (GLM) with Poisson distribution and default

logarithm-link to estimate model parameters, and we

also used a quasi-Poisson method with generalized ad-

ditivemodel (GAM) that uses nonparametric regression

with smoothing splines. Before we fitted the models in

R, missing values of some of the predictor variables

(e.g., minimum temperature, maximum temperature,

rainfall, and humidity) were imputed using median

values of the available values for that variable across

all years. Although more sophisticated imputation

techniques such as predictive mean/median matching

and more robust methods (e.g., random forest) could

have been utilized (see e.g., R packages ‘‘mice’’ and

‘‘amelia’’), our preliminary analyses suggested that, when

values are missing completely at random (MCAR), pre-

dictive median matching techniques work relatively well.

For each of the four statistical models within a district,

we assumed that the (weekly) malaria counts for three

years 2014–16 (a total of 156 weeks) arise from a Poisson

distribution in which the logarithm of the mean number

of counts is assumed to follow different forms in the

‘‘glm’’ and ‘‘gam’’ functions in R:

(i) a basic Poisson regression model: glm[Malaria.

Cases ; Tmin 1 Tmax 1 rainfall 1 humidity,

family 5 poisson(), data 5 imp.data],

(ii) a model with smoothly estimated week effects:

gam[Malaria.Cases; s(Week)1Tmin1Tmax1
rainfall 1 humidity, family 5 poisson(), data 5
imp.data],

(iii) a model allowing for monthly effects: glm

[Malaria.Cases ; Month 1 Tmin 1 Tmax 1
rainfall 1 humidity, family 5 poisson(), data 5
imp.data], and
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(iv) a generalized additive model with smoothly esti-

mated week, minimum temperature, maximum

temperature, rainfall, and humidity: gam[Malaria.

Cases; s(Week)1 s(Tmin)1 s(Tmax)1 s(rainfall)1
s(humidity), family 5 poisson(), data 5 imp.data].

Each of the above four statistical models was then

compared in terms of its goodness-of-fit statistic using

adjusted R-squared (AdjR2) values. We also used mean

absolute relative error (MARE) to compare the pre-

dictive performance of the models based on one-week-

ahead hold-out malaria counts by using at least two

years of training data. Clearly, in terms of overall

performance, a model with highest AdjR2 and lowest

MARE is preferred among the all plausible models.

Once a model is found to be adequate by the above two

overall measures, a more-detailed analysis that explores

the extent of relationship between the malaria cases and

the meteorological predictors was carried out using the

estimated (possibly nonlinear) relations.

Note that a time series model [e.g., autoregressive

moving average (ARMA)] might serve as a good can-

didate for capturing the weekly autocorrelations among

the raw malaria counts. However, when we included

time-dependent (in this case weekly) main effects or

smooth trend, in addition to nonlinear trends with other

temporally varying variables (e.g., temperature or hu-

midity) within the GAM framework, the estimated

(deviance) residuals were found to be not significantly

autocorrelated by the standard Durbin–Watson test.

For this reason, we have decided to report results based

on the model that assumes uncorrelated (deviance) re-

siduals. Moreover, the use of a generalized additive

mixed model (GAMM; as described in Kohn et al. 2000)

with an autoregressive (AR) model for the random in-

tercept to account for possible temporal dependence

did not significantly improve predictions for our data

analyses. We agree, however, that such an extended

analysis is worth doing, and we thank the reviewer for

the suggestions.

3. Findings based on GLM and GAM models

To compare the predictive performance, in Fig. 1 we

present the actual observedweeklymalaria counts (solid

black line) and predicted value of the malaria counts

based on four different statistical models described in

the previous section. For illustration, we present the

detailed results only for the district of Visakhapatnam.

Overall, themost complexmodel that takes into account

all possible additive (smooth) nonlinear functional re-

lationships between the malaria counts and the five

predictors (including the smooth trend for weeks) seems

to fit the data very well with 72% adjusted R squared,

meaning that the fitted model accounts for 72% of the

variation. Moreover, a MARE of 0.32 for model iv as

described in the previous section indicates that, on av-

erage, the predicted counts are accurate with only 32%

relative error. This means that if the predicted count is

100, on average, then the actual count is within the range

of (68, 132).

In addition, we also computed the Spearman’s rank

correlation (Sp corr) between the malaria counts and

each of the four predictor variables by each of the three

years using weekly values. From Table 1 it appears that

the relationship between the malaria counts and a spe-

cific predictor changes over time (here we are showing

only annual variations, but monthly or, more generally,

weekly variations can also be depicted using the smooth

functions using model iv). In particular, notice that for

2014 humidity seems to be marginally strongly associ-

ated (Sp corr 5 0.8072) with malaria counts among the

four predictors, but for 2015 rainfall seems marginally

strongly associated (Sp corr 5 0.7131) and humidity

seems least associated (with Sp corr 5 0.3989) with

malaria counts. This nonlinear temporal variability and

association of malaria counts with different predictors

partly justifies the need for more complex models such

as statistical GAMmodel iv as described in the previous

section. To illustrate the highly nonlinear nature of the

relationship, we present below the smooth estimates of

malaria counts as related to each of the five predictors

(including weeks) (Fig. 2).

Consider the smooth trends that explain the rela-

tionships between malaria counts and each of the

predictors that are allowed to vary smoothly with

the respective values of the predictors. From Fig. 1

it is clear that the malaria counts for Visakhapatnam

are expected rise around week 30 (i.e., during weeks

of July) and then fall off during the winter months.

However, such nonlinear relationships with meteo-

rological variables (Tmin, Tmax, rainfall, and hu-

midity) are not so clear-cut and vary significantly

across various districts. Interestingly, it appears that

higher minimum temperatures (e.g., .248C) tend to

lead to higher malaria counts but lower values do not

seem to impact the malaria counts. On the other hand,

higher values of maximum temperature (e.g., .328C)
seem to negatively impact the malaria counts. The

relationships with rainfall and humidity appear to

be not as strong once we account for smooth (weekly)

trends and temperatures as both smooth curves

seem to hover around zero across all of their values.

Nonetheless, a rainfall amount between 40 and 50mm

seems to have a positive impact on malaria counts,

and an excessive or a much lower amount of rainfall
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seems to have very little effect on malaria counts.

Also, the association of malaria counts with humidity

appears even more precarious and relatively flat across

almost all humidity levels. However, note that these

(smooth nonlinear) relationships between malaria cases

and predictors may change dramatically for other dis-

tricts, and so we should not conclude and claim similar

behavior of these predictors across all district levels.

Detailed plots and analyses for the other districts (sim-

ilar to Figs. 1 and 2) are available in the online supple-

mental material.

Results of all four models for all of the districts are

available in Table S1 in the online supplemental mate-

rial. We have described the incident rate ratio findings

through an example of one of the districts of Andhra

Pradesh: Visakhapatnam.

a. Average of temperature

The estimated ‘‘incident rate ratio’’ shows that a one-

unit increase in minimum weekly temperature can lead

to a 3%–6% increase [IRR5 1.041 with 95% confidence

interval from 1.027 to 1.056] in weekly reported malaria

cases, given that the other variables are held constant in

the model. However, if the average maximum weekly

temperature were to increase by one unit (18), the rate

ratio for weekly reported malaria cases would be ex-

pected to lead to a 7%–8% reduction (IRR5 0.924 with

95% CI of 0.916–0.932) in cases of malaria, while hold-

ing all other variables in the model constant.

b. Average humidity

From the estimated incident rate ratio, if the average

humidity were to increase by one unit, it can lead to

nearly a 1% decrease (0.996; 95% CI of 0.994–0.998) in

weekly reported cases of malaria.

c. Average rainfall

From the estimated rate ratio, if the average rainfall

were to increase by one unit, the rate ratio for malaria

cases would be expected to increase by a factor of 1.0033

or 0.3% (95%CI of 1.003–1.004), while holding all other

variables in the model constant (Table S1 in the online

supplemental material).

The results for all of the districts of Andhra Pradesh

summarized in Table S1 show that the adjusted R square

varied from 34% to 72% (note that in Table S1 italics in-

dicate where all IRR are less than 1 and show a significant

negative relation and boldface type indicates where all

IRR are above 1 and show a significant positive relation).

The model shows that the districts of Anantapur, Chitoor,

East Godavari, Kadapa, Krishna, and Kurnool present

statistically significant increase in reported malaria cases

with a one-unit increase in maximum temperature and

humidity. The same model shows a statistically significant

TABLE 1. Spearman correlation of malaria cases with meteorological variables.

Year Temperature min Temperature max Temperature mean Humidity Rainfall

2014 0.7674 0.6398 0.7213 0.8072 0.701

2015 0.7131 0.509 0.6301 0.3989 0.6318

2016 0.6392 0.3366 0.5726 0.559 0.7513

FIG. 1. Plot presenting predicted and reported cases of malaria for one of the districts of

Andhra Pradesh.
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reduction in cases of malaria in the districts of Nellore,

Prakasam, Srikakulum,Visakhaptnam, andWestGodavari

with a one-unit increase in maximum temperature.

Similarly, an increase in humidity did not show a trend

in the same direction for all of the districts. Rainfall

was not significantly associated with an increase in

cases of malaria. On the basis of changes in meteo-

rological conditions, we can predict cases for each

district to some extent; these relationships can be

viewed in a spatial map in Fig. 3.

Our analyses show that the incremental increase in

meteorological parameters does not lead to an increase in

malaria reported in the same manner for all of the dis-

tricts within the same state. This result suggests that other

factors in the environment also influence disease occur-

rence. Therefore, the research team plans to explore the

influence of vegetation, elevation, and water index and

report those results in a subsequent publication.

Identification and prediction of high-risk areas are

useful to initiate prevention measures at the small-area

level, such as a block, to minimize drug resistance and

maximize control. The peaks in malaria cases can be

prevented by a proactive approach such as predictive

analyses. This would ensure timely communication

designed for adopting preventive measures such as en-

suring proper sanitation, preventing waterlogging, using

long-lasting insecticide-treated bed nets, conducting

indoor residential spraying, and ensuring complete

antimalarial drug intake by positive cases. These tools

can collectively help to prioritize resources, enhance

investments, and establish effective initiatives.

4. Conclusions

For operational health agencies, the most pressing

need is the strengthening of current disease-control ef-

forts to bring down disease rates and manage short-term

climate risks. Such planning will, in turn, increase de-

velopment of processes designed for building resilience

to long-term climate change.

National and state agencies need to work through a

range of programs to (i) ensure political support and

larger financial investment in preventive and curative

interventions and tools to bring down current vector-

borne disease burdens, (ii) promote a comprehensive

approach to climate risk management to foster part-

nerships across departments of health, climate, and

remote sensing for effective interventions, and (iii) sup-

port applied research through participation of local and

national research departments and targeted initiatives

on priority diseases and population groups.

5. Limitations

Better prediction may be achieved through a higher

resolution of climate data and reported health cases at

FIG. 2. GAM-based smooth estimates of

malaria for Visakhapatnam, one of the

districts of Andhra Pradesh.
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the small-area level (block); inclusion of cases reported

in private hospitals, population density, and type of

built-up constructions may also improve prediction.

This method also does not take into account indicators

of human behavior, the economic profile of the

community, or physical parameters such as moisture

index or soil type. Many other additional explanatory

variables could have been included that could po-

tentially influence the spread of malaria; however,

multiple-variable data collection over wider regions

on a weekly basis for multiple years not only becomes

time-consuming and expensive, it also introduces a lot

of missing values. So, we focused on using those avail-

able variables that still could significantly explain the

malaria epidemic. Also, we have not formally carried

out a full hierarchical model to account for spatial

patterns; computing rudimentary distance based on

Moran’s I for the estimated intercepts for different

districts using the GLM (and not GAM) reveals no

significant spatial association. However, admittedly a

more thorough and complex model-based statistical

analysis could be performed to find spatial patterns (if

any) as a part of future analysis.
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APPENDIX

List of Abbreviations

AdjR2 Adjusted R-squared

GLM Generalized linear model

FIG. 3. Spatial display of district-specific incidence risk ratio based on Poisson regression.
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GAM Generalized additive model

GAMM Generalized additive mixed model

IDSP Integrated Disease Surveillance Program

ISRO Indian Space Research Organization

MARE Mean absolute relative error

MCAR Missing completely at random

VBDs Vectorborne diseases
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